

BHASKAR CLASSES PVT LTD

Integration and Differential Equation

- 1. Evaluate the following $\int \frac{(x^3+8)(x-1)}{x^2-2x+4} dx$.
- 2. Evaluate $\int \sin 2x \sin 3x \, dx$

3. Evaluate
$$\int \frac{8 dx}{(x^3 + 3x^2 + 3x + 1)\sqrt{x^2 + 2x - 3}}$$

4. Evaluate
$$\int \frac{1+x^2 \log_e x}{x+x^2 \log_e x} dx$$

5. Evaluate
$$\int \frac{dx}{(x-p)\sqrt{(x-p)(x-q)}}$$

6. Evaluate
$$\int \frac{1}{\sin x - \sin 2x} dx$$

7. Evaluate
$$\int \frac{\log_{e^x} e \cdot \log_{e^2 x} e \cdot \log_{e^3 x} e}{x} dx$$

8. Evaluate
$$\int (x-5)\sqrt{x^2+x} \ dx$$

9. Evaluate
$$\int \frac{dx}{x^3 \sqrt{x^2 - 1}}$$

10. Evaluate
$$\int \sin(101x) \cdot \sin^{99} x \, dx$$
.

11. The integral
$$\int \left(1 + x - \frac{1}{x}\right) e^{x + \frac{1}{x}} dx$$
 is equal to?

- 12. Find the value of $\int_0^4 [x] dx$, where [.] represents the greatest integer function.
- 13. If $f(x) = x + \sin x$, then find the value of $\int_{\pi}^{2\pi} f^{-1}(x) dx$.

14. Evaluate
$$\int_0^{\pi/2} \frac{\sin^2 x \, dx}{\sin x + \cos x}$$

- 15. If a continuous function f on [0, a] satisfies f(x)f(a-x)=1, a>0, then find the value of $\int_0^a \frac{dx}{1+f(x)}$.
- 16. Evaluate $\int_0^{\frac{\pi}{2}} x \cot x \ dx$

17. Evaluate
$$\int_{-\infty}^{0} \frac{te^t}{\sqrt{1-e^{2t}}} dt$$

18. Find the points of minima for
$$f(x) = \int_0^x t(t-1)(t-2)dt$$

19. Determine a positive integer
$$n$$
 such that $\int_0^{\pi/2} x^n \sin x dx = \frac{3}{4} (\pi^2 - 8)$

20. The value of the integral
$$\int_0^{1/2} \frac{1+\sqrt{3}}{((x+1)^2(1-x)^6)^{1/4}} dx$$
 is _____.

By S. K. Singh Bhaskar *Contact:* +91-9910733319

- 21. The value of $\int_0^1 4x^3 \left\{ \frac{d^2}{dx^2} (1-x^2)^5 \right\} dx$ is ______.
- 22. Find the order and degree (if defined) of the following differential equation $\frac{d^4y}{dx^4} \sin\left(\frac{d^3y}{dx^3}\right) = 0$
- 23. Find the differential equation whose general solution is given $y = (c_1 + c_2)\cos(x + c_3) c_4e^{x+c_5}$ where $c_1, c_2, c_3, c_4, and c_5$ are arbitrary constants.
- 24. Show that the differential equation $(x^2 + xy)dy = (x^2 + y^2)dx$ is homogeneous and solve it.
- 25. Solve $\frac{dy}{dx} = \frac{2x y + 1}{x + 2y 3}$
- 26. Solve $\left(\frac{dy}{dx}\right) + \left(\frac{y}{x}\right) = y^3$
- 27. If length of tangent at any point on the curve y = f(x) intercepted between the point and the x-axis is of length 1. Find the equation of the curve.
- 28. Find the equation of family of curves which intersect the family of curves xy = c at am angle 45°.
- 29. Let $f: R \to R$ be a differentiable function with f(0) = 0. If y = f(x) satisfies the differential equation, $\frac{dy}{dx} = (2 + 5y)(5y 2)$, then the value of $\lim_{x \to -\infty} f(x)$ is ____.
- 30. If $x \frac{dy}{dx} = x^2 + y 2$, y(1) = 1, then y(2) equals _____.