

BHASKAR CLASSES PVT LTD

Continuity, Differentiability and Differentiation

1. Discuss the continuity of the following functions at the indicated point(s)

$$f(x) = \begin{cases} |x| \cos\left(\frac{1}{x}\right), & x \neq 0 \\ 0, & x = 0 \end{cases} at x = 0$$

2. Find the value of 'a' for which the function f defined by

$$f(x) = \begin{cases} a \sin \frac{\pi}{2}(x+1), & x \le 0 \\ \frac{\tan x - \sin x}{x^3}, & x > 0 \end{cases}$$
 is continuous at $x = 0$.

- 3. Discuss the continuity of $f(x) = \begin{cases} 2x 1, & x < 0 \\ 2x + 1, & x \ge 0 \end{cases}$ at x = 0.
- 4. Prove that the function $f(x) = \begin{cases} \frac{x}{|x| + 2x^2}, x \neq 0 \\ k, x = 0 \end{cases}$ remains discontinuous at x = 0, regardless the choice of k.
- 5. Determine the values of a, b, c for which the function f(x) =

$$\begin{cases} \frac{\sin(a+1)x + \sin x}{x} &, \ for < 0 \\ c &, for \ x = 0 \ is \ continuous \ at \ x = 0 \ . \\ \frac{\sqrt{x+bx^2} - \sqrt{x}}{bx^{3/2}} &, \ for \ x > 0 \end{cases}$$

- 6. If $f(x) = \begin{cases} \frac{1-\cos kx}{x\sin x}, x \neq 0 \\ \frac{1}{2}, x = 0 \end{cases}$ is continuous at x = 0, find k.
- 7. If $f(x) = \begin{cases} \frac{2^{x+1}-16}{4^x-16}, & \text{if } x \neq 2 \\ k, & \text{if } x = 2 \end{cases}$ is continuous at x = 2, find k.

8. Let
$$f(x) = \begin{cases} \frac{1-\cos 4x}{x^2} & \text{, if } x < 0 \\ a & \text{, if } x = 0 \\ \frac{\sqrt{x}}{\sqrt{16+\sqrt{x}}-4} & \text{, if } x > 0 \end{cases}$$

Determine the value of a so that f(x) is continuous at x = 0.

- 9. If $f(x) = \frac{\sqrt{2} \cos x 1}{\cot x 1}$, $x \neq \frac{\pi}{4}$. Find the value of $f\left(\frac{\pi}{4}\right)$ so that f(x) becomes continuous at $x = \pi/4$.
- 10. Show that f(x) = |x| is not differentiable at x = 0.

11. Show that the function
$$f(x) = \begin{cases} x^2 & \sin(\frac{1}{x}), & \text{if } x \neq 0 \\ 0, & \text{if } x = 0 \end{cases}$$
 is differentiable at $x = 0$ and $f'(0) = 0$.

12. Discuss the differentiability of
$$f(x) = \begin{cases} x e^{-\left(\frac{1}{|x|} + \frac{1}{x}\right)}, & x \neq 0 \\ 0, & x = 0 \end{cases}$$
 at $x = 0$.

- 13. Show that f(x) = |x 3| is continuous but not differentiable at x = 3.
- 14. If *f* is defined by $f(x) = x^2 4x + 7$, show that $f'(5) = 2f'(\frac{7}{2})$.

15. If
$$f(x) = |\cos x|$$
, find $f'(\frac{\pi}{4})$ and $f'(\frac{3\pi}{4})$.

16. If
$$f(x) = |\cos x - \sin x|$$
, find $f'(\frac{\pi}{6})$ and $f'(\frac{\pi}{3})$.

- 17. Differentiate the following functions from first principles e^{3x} .
- 18. Differentiate the following functions with respect to x $\log(x + \sqrt{a^2 + x^2})$.
- 19. Differentiate the following functions with respect to x

$$\log\left(x+2+\sqrt{x^2+4x+1}\right).$$

20. If
$$y = \log\left(\sqrt{x} + \frac{1}{\sqrt{x}}\right)$$
, prove that $\frac{dy}{dx} = \frac{x-1}{2x(x+1)}$.

21. If
$$y = \sqrt{a^2 - x^2}$$
, prove that $y \frac{dy}{dx} + x = 0$.

22. Differentiate the following functions with respect to x

$$\sin^{-1}\left\{\frac{\sin x + \cos x}{\sqrt{2}}\right\}, -\frac{3\pi}{4} < x < \frac{\pi}{4}.$$

23. If $y = \cot^{-1}\left\{\frac{\sqrt{1+\sin x}+\sqrt{1-\sin x}}{\sqrt{1+\sin x}-\sqrt{1-\sin x}}\right\}$, show that $\frac{dy}{dx}$ is independent of x.

24. If
$$\tan^{-1}\left\{\frac{\sqrt{1+x}-\sqrt{1-x}}{\sqrt{1+x}+\sqrt{1-x}}\right\}$$
, find $\frac{dy}{dx}$.

25. If
$$x\sqrt{1+y} + y\sqrt{1+x} = 0$$
 and $x \neq y$, prove that $\frac{dy}{dx} = -\frac{1}{(x+1)^2}$.